170 research outputs found

    Faster Convex Optimization: Simulated Annealing with an Efficient Universal Barrier

    Full text link
    This paper explores a surprising equivalence between two seemingly-distinct convex optimization methods. We show that simulated annealing, a well-studied random walk algorithms, is directly equivalent, in a certain sense, to the central path interior point algorithm for the the entropic universal barrier function. This connection exhibits several benefits. First, we are able improve the state of the art time complexity for convex optimization under the membership oracle model. We improve the analysis of the randomized algorithm of Kalai and Vempala by utilizing tools developed by Nesterov and Nemirovskii that underly the central path following interior point algorithm. We are able to tighten the temperature schedule for simulated annealing which gives an improved running time, reducing by square root of the dimension in certain instances. Second, we get an efficient randomized interior point method with an efficiently computable universal barrier for any convex set described by a membership oracle. Previously, efficiently computable barriers were known only for particular convex sets

    A Collaborative Mechanism for Crowdsourcing Prediction Problems

    Full text link
    Machine Learning competitions such as the Netflix Prize have proven reasonably successful as a method of "crowdsourcing" prediction tasks. But these competitions have a number of weaknesses, particularly in the incentive structure they create for the participants. We propose a new approach, called a Crowdsourced Learning Mechanism, in which participants collaboratively "learn" a hypothesis for a given prediction task. The approach draws heavily from the concept of a prediction market, where traders bet on the likelihood of a future event. In our framework, the mechanism continues to publish the current hypothesis, and participants can modify this hypothesis by wagering on an update. The critical incentive property is that a participant will profit an amount that scales according to how much her update improves performance on a released test set.Comment: Full version of the extended abstract which appeared in NIPS 201

    Rate of Price Discovery in Iterative Combinatorial Auctions

    Full text link
    We study a class of iterative combinatorial auctions which can be viewed as subgradient descent methods for the problem of pricing bundles to balance supply and demand. We provide concrete convergence rates for auctions in this class, bounding the number of auction rounds needed to reach clearing prices. Our analysis allows for a variety of pricing schemes, including item, bundle, and polynomial pricing, and the respective convergence rates confirm that more expressive pricing schemes come at the cost of slower convergence. We consider two models of bidder behavior. In the first model, bidders behave stochastically according to a random utility model, which includes standard best-response bidding as a special case. In the second model, bidders behave arbitrarily (even adversarially), and meaningful convergence relies on properly designed activity rules

    Fighting Bandits with a New Kind of Smoothness

    Full text link
    We define a novel family of algorithms for the adversarial multi-armed bandit problem, and provide a simple analysis technique based on convex smoothing. We prove two main results. First, we show that regularization via the \emph{Tsallis entropy}, which includes EXP3 as a special case, achieves the Θ(TN)\Theta(\sqrt{TN}) minimax regret. Second, we show that a wide class of perturbation methods achieve a near-optimal regret as low as O(TNlogN)O(\sqrt{TN \log N}) if the perturbation distribution has a bounded hazard rate. For example, the Gumbel, Weibull, Frechet, Pareto, and Gamma distributions all satisfy this key property.Comment: In Proceedings of NIPS, 201

    Low-Cost Learning via Active Data Procurement

    Full text link
    We design mechanisms for online procurement of data held by strategic agents for machine learning tasks. The challenge is to use past data to actively price future data and give learning guarantees even when an agent's cost for revealing her data may depend arbitrarily on the data itself. We achieve this goal by showing how to convert a large class of no-regret algorithms into online posted-price and learning mechanisms. Our results in a sense parallel classic sample complexity guarantees, but with the key resource being money rather than quantity of data: With a budget constraint BB, we give robust risk (predictive error) bounds on the order of 1/B1/\sqrt{B}. Because we use an active approach, we can often guarantee to do significantly better by leveraging correlations between costs and data. Our algorithms and analysis go through a model of no-regret learning with TT arriving pairs (cost, data) and a budget constraint of BB. Our regret bounds for this model are on the order of T/BT/\sqrt{B} and we give lower bounds on the same order.Comment: Full version of EC 2015 paper. Color recommended for figures but nonessential. 36 pages, of which 12 appendi

    A New Approach to Collaborative Filtering: Operator Estimation with Spectral Regularization

    Get PDF
    We present a general approach for collaborative filtering (CF) using spectral regularization to learn linear operators from "users" to the "objects" they rate. Recent low-rank type matrix completion approaches to CF are shown to be special cases. However, unlike existing regularization based CF methods, our approach can be used to also incorporate information such as attributes of the users or the objects -- a limitation of existing regularization based CF methods. We then provide novel representer theorems that we use to develop new estimation methods. We provide learning algorithms based on low-rank decompositions, and test them on a standard CF dataset. The experiments indicate the advantages of generalizing the existing regularization based CF methods to incorporate related information about users and objects. Finally, we show that certain multi-task learning methods can be also seen as special cases of our proposed approach
    corecore